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Abstract—Service compositions need to continuously self-
adapt to cope with unexpected failures. In this context adapta-
tion becomes a fundamental requirement that must be elicited
along with the other functional and non functional require-
ments. Beside modelling, effective adaptation also demands
means to trigger it at runtime as soon as the actual behavior of
the composition deviates from stated requirements. This paper
extends traditional goal models with adaptive goals to support
continuous adaptation. Goals become live, runtime entities
whose satisfaction level is dynamically updated. Furthermore,
boundary infringement triggers adaptation capabilities. The
paper also provides a methodology to trace goals onto the
underlying composition, assess goals satisfaction at runtime,
and activate adaptation consequently. All the key elements are
demonstrated on the definition of the process to control an
advanced washing machine.

I. INTRODUCTION

Service compositions (or processes) are one of the main
technical solution adopted to provide business processes.
The reasons behind this success lay in their flexibility and
the reduced development costs. However the main pitfall
of these applications is their intrinsic unreliability due to
the distributed and loosely coupled nature of their service
components. For this reason a service composition may fail
unexpectedly due to several faults [5]: physical faults (if
the network malfunctions, or a partner service is down), de-
velopment faults (e.g., incompatibility among parameters or
changes in the interfaces provided by partner services), or in-
teraction faults (QoS violations, slow response times). In this
context self-adaptation is a critical feature for service-centric
applications that need to cope with failures autonomously
to keep their behavior aligned with the “perception” of the
stakeholders. The need for adaptation may also come from
new/changing business needs, that impose to update the
functionality provided by the system accordingly.

A simple way to achieve this objective would be the
design-time definition of all possible evolutions of the pro-
cess, but this is not always feasible, since some requirements
or features of the operational environment may be unknown,
and it would also produce an overly tangled design of the
process. In contrast, it is much more convenient if we think
of adaptation as a requirement per-se that must be properly
supported throughout the whole lifecycle of the process.

Requirements models must represent the “conventional”
(i.e. functional and non functional) requirements of a ser-
vice composition, but also its adaptation capabilities, along
with the diagnosis mechanisms adopted to trigger them.
Requirements must also be self-reflective, providing suitable
mechanisms to assess their satisfaction at runtime and enable
adaptation strategies to keep the execution on track.

Despite traditional goal models, like KAOS [3] or i* [17],
have been widely adopted to represent requirements, they
do not consider adaptation explicitly. Even if different ap-
proaches that try to model adaptation in goals specification
also exist (e.g., [8] [11]), they only help list the different
strategies that can be performed, and do not offer explicit
support to the actual evolution of the system. Furthermore,
to the best of our knowledge, none of these goal models
directly embed the mechanisms to measure the satisfaction
level of stated goals and support their modifications.

In this paper, we propose an innovative approach to
represent requirements for service compositions and enforce
them from the design down to the execution. Adaptation
is selected according to requirements’ satisfaction/violation
levels. According to our view, there are: crisp requirements,
whose satisfaction can be expressed in terms of a binary
value (yes or not), and fuzzy, which can be satisfied at dif-
ferent degrees (expressed through a real number x ∈ [0, 1]).

As shown in Figure 1 our solution works at three different
levels of abstraction:

1) We adopt a live goal model to render the process’
requirements along with its adaptation capabilities.
This model is able to accomodate changes at runtime
and update goals’ satisfaction levels dynamically. We
also introduce adaptive goals to dynamically trigger
adaptation actions, cause the system to move to a new
goal model, and propagate the corresponding changes
to the underlying implementation.

2) We support requirements traceability by linking the
goal model to both a functional and a supervision
model of the system. The former includes a set of
abstract processes able to achieve the objectives stated
in the goal model. The latter defines how to measure
and update goals’ satisfaction levels, along with the
policies to safely apply adaptation at runtime.

3) We execute the functional and supervision models



through a suitable infrastructure [4]. It includes a set
of execution engines that run the processes included in
the functional model. It also provides data collectors,
monitors, and adaptors to apply the monitoring and
adaptation activities defined in the supervision model.
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Figure 1. Overall approach.

The approach is described through a simple laundry
system that controls a washing machine. It must provide
assignments, select washing programs, and activate washing
cycles. The expected result is to accomplish all tasks with
minimum energy consumption.

The rest of the paper is structured as follows. Section II
presents our goal model. Section III describes the translation
of the goal model into the functional and supervision models,
and explains how they can be applied at runtime, Section IV
surveys related works, and Section V concludes the paper.

II. GOAL MODEL

This section describes the upper part of the proposal.
We adapt KAOS [14] introducing fuzzy logic operators,
already proposed in RELAX [16], to formalize the goals
associated with fuzzy requirements (fuzzy goals), while
goals representing crisp requirements (crisp goals) are still
represented with traditional logic operators. We also leverage
goals “operationalization” which allows us to reason about
the functional view of the system, easing the generation
of a direct mapping onto the underlying implementation.
Finally we also embed in KAOS the possibility to express
adaptive goals carrying on the diagnosis that may trigger
some adaptation actions and the modifications introduced in
the goal model by these adaptations.

A. KAOS goal model

The main features provided by KAOS are goals refinement
and formalization. Goals refinement allows us to decompose
a goal into several conjoined subgoals (AND-refinement) or
into alternative combinations of subgoals (OR-refinement).
The satisfaction of the parent goal depends on the achieve-
ment of all (for AND-refinement) or at least one (for OR-
refinement) of its underlying subgoals. Goals decomposition
can also be accomplished through formal rules [14]. The
refinement of a goal terminates when it can be “operational-
ized”, i.e., it can be decomposed into a set of operations.

Goals are formalized in terms of LTL properties 1.
Each goal can follow a particular pattern depending on its
temporal behavior: achieve/cease goals (specified through
sometimes in the future/past operators) and maintain/avoid
goals (specified through always in the future/past operators).

KAOS also distinguishes goals representing non-
functional requirements (soft-goals), whose satisfaction de-
pends on how behavioral goals (representing functional re-
quirements) are achieved. They can influence the application
execution, for example if we have different application mod-
els that provide the same functionality, and satisfy different
soft-goals with a different degree. Two goals may be in
conflict, if the achievement of one of them obstructs the
satisfaction of the other.
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Figure 2. The KAOS goal model for the laundry system

Figure 2 sketches the simplified KAOS goal model for
the laundry system. The general objective of the process is
to wash clothes (goal G1), which is AND-refined into the
following subgoals: setup the washing machine (goal G1.1),
complete a washing cycle (goal G1.4), consume a small
amount of energy (goal G1.2) and keep the number of dirty
clothes equal to zero (goal G1.3). The setup of a washing
machine requires that clothes to be washed be inserted in the
drum (goal G1.1.1), that powder be added (goal G1.1.2),
and that a washing program be selected (goal G1.1.3).
Completing a washing cycle requires to start the selected
program (goal G1.4.1) and empty the washing machine when
it terminates the program execution (goal G1.4.2).

Goals G1.2 and G1.3 are soft goals since their satisfac-
tion depends on “how” their parent goal is achieved. For

1They can be specified through operators like sometimes in the future
(♦), sometimes in the past (�), always in the future (�), always in the past
(�), always in the future until (U ), and always in the past since (S), in the
previous state (•), in the next state (◦).



Goal Formal definition

G1.1.1 @(wm.state = selected)⇒ ♦t<x¬(wm.drumEmpty)

G1.1.2 @(wm.state = selected)⇒ ♦t<y(wm.powder)

G1.1.3 (wm.program = ””) ∧@(wm.state = selected)⇒
♦t<z(wm.program <> ”” ∧ wm.washDuration > 0)

G1.2 �(e ≤ EMAX)

G1.3 �(dirty clothes = 0)

G1.4.1 ((wm.state = selected) ∧ (¬wm.drumEmpty)
∧(wm.program = ””) ∧ (wm.powder)∧
∧(•(wm.drumEmpty) ∨ ¬(•wm.powder)∨
∨¬(•wm.program = ””)))⇒
♦t≤wm.washDuration(wm.state = completed)

G1.4.2 (wm.state = completed)⇒
♦t<w(wm.program == ””) ∧ (wm.state = free)∧
(¬wm.powder) ∧ wm.drumEmpty

Table I
KAOS GOALS DEFINITIONS

example goal G1.3 depends on the frequency of the washing
programs, since more frequent programs may rapidly reduce
the amount of dirty clothes. Moreover goal G1.3 is in conflict
with goal G1.2 (see the dotted line in Figure 2) since
reducing the number of dirty clothes may imply the selection
of washing programs that consume more energy units.

The formal definition of goals is reported in Table II-A2.
For example, goal G1.1.1 states that if the washing ma-
chine’s drum is empty and the washing machine is selected
to perform a wash cycle (@(wm.state = selected)), its
drum must be filled with the clothes that have to be washed
(condition ¬wm.drumEmpty) within x time units.

B. Modified KAOS goal model

Service compositions need to continuously assess their
requirements and activate adaptation when needed, to ac-
comodate changes that may happen at the requirement
or environmental level. For this reason, we maintain the
goal model live at runtime, associating each goal with a
satisfaction value (s ∈ [0, 1]) that is updated dynamically.
Each goal is also associated with a priority and a set of
stakeholders who deem that goal important. The former
allows us to resolve conflicts among different adaptation
actions. Two adaptations are in conflict if their concurrent
application generates incoherent goal models. This way the
adaptation associated with the goal having the highest prior-
ity will be executed, disabling the others. While stakeholders
information is adopted to detect the process instances on
which an adaptation should be applied (i.e., only those run
by the stakeholders associated with the failing goal).

Another drawback of KAOS is the absence of an expres-
sive means to formalize goals. In fact, since LTL formulae
are evaluated through a binary value (yes or not), they
can only express if a goal is satisfied or not, leaving out

2Notice that operator ’@’ has the following meaning: @P ≡ •¬P ∧◦P

the corresponding satisfaction/violation level. As already
explained in Section I, this can be particularly important
for fuzzy goals that rely on temporal values, quantities
or frequencies. In our example, we have two fuzzy goals:
G1.2 and G1.3. The definition of goal G1.2 given in Table
II-A can only assess whether the energy consumed does
not exceed the maximum amount permitted (EMAX ), and
it omits information regarding its distance from EMAX .
Furthermore the definition of goal G1.3 can only assess
whether there are no dirty clothes, and omits a measurement
of how many dirty clothes are left.

To express fuzzy goals, we adopt a set of operators,
already introduced in RELAX [16] to express non-critical
requirements. This notation proposes the following opera-
tors: AS EARLY/LATE AS POSSIBLE φ , for temporal
quantities; AS CLOSE AS POSSIBLE TO q φ, to
assess the proximity of quantities or frequencies (φ) to a
certain value (q); AS MANY/FEW AS POSSIBLE φ ,
for quantities (φ). This way goals G1.2 and G1.3 can be
redefined in terms of RELAX operators as follows:

G1.2 : AS CLOSE AS POSSIBLE TOEMAX (EMAX − e)

G1.3 : AS FEW AS POSSIBLE COUNT (dirty clothes)

G1.2 expresses that the difference between the maximum
amount of energy that can be consumed (EMAX ) and the
energy spent (e) must be as close as possible to EMAX .
In other words, the energy consumed must be as little as
possible. While G1.3 asserts that the amount of dirty clothes
must be as few as possible.

Assessment of goals G1.2 and G1.3 is established from
the result of the membership functions shown below, that
assign a satisfaction value between 0 and 1, depending
respectively on the amount of energy consumed (Figure
3(a)) or the number of dirty clothes (Figure 3(b)). For
example, for goal G1.2 the membership function on the
left assigns a satisfaction value depending on the difference
between EMAX and the energy consumed . This goal is not
satisfied when this difference is less than 30, its satisfaction
is comprised between 0 and 1 if the difference is between
30 and 45 and is fully satisfied if the difference is greater
than 45. The other membership function is stricter since the
requirement is fully satisfied only if the number of dirty
clothes is exactly equal to 0, and is less satisfied for all
other values. Note that these functions are limited, e.g. the
function in Figure 3(b) cannot decrease to ∞. The shape
of the membership function can be tuned depending on
the priority assigned to a goal: the higher the priority is
the higher the severity of the membership function will be.
The shape of the membership function can also be inserted
manually by the requirements engineers.

To propagate the satisfaction value of leaf goals (that can
be monitored directly) to their parent goal we adopt the
following method:
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Figure 3. Membership functions for goals G1.2 (a) and G1.3 (b)

• If a goal G is AND-refined in k crisp goals and n fuzzy
goals its satisfaction value is given by:

s(G) = (s(C1) ∧ ... ∧ s(Ck)) ∗min(s(F1), ..., s(Fn))

s(Ci) = 0, 1 i = 1, ..., k (satisfaction value of crisp goals)
s(Fi) ∈ [0, 1] i = 1, ..., n (satisfaction value of fuzzy goals)

If at least one of the crisp subgoals is not satisfied, the
parent goal is not satisfied. Otherwise the satisfaction of
goal s(G) ∈ [0, 1] depends on the minimum satisfaction
value of the fuzzy subgoals (s(Fi)). For example, if
goal G1.1 and G1.4 are satisfied and the satisfaction
value of G1.2 and G1.3 is respectively 0.4 and 0.8, the
satisfaction of G1 will be 0.4

• If a goal G is OR-refined in k crisp goals and n fuzzy
goals, its satisfaction value will be given by:

s(G) = (s(C1) ∨ ... ∨ s(Ck)) ∗max(s(F1), ..., s(Fn))

If all crisp subgoals are not satisfied, the parent goal is
not satisfied. Otherwise the satisfaction s(G) ∈ [0, 1]
depending on the maximum satisfaction value of the
fuzzy subgoals.

Other problems may arise if a leaf goal is not directly
monitored, e.g. for performance reasons, or probes malfunc-
tioning. To solve this issue we associate each contribution
link with a weight. If goal Gi hurts/breaks goal G the weight
assigned to the contribution link is negative (comprised
between -1 and 0), while since Gi helps/makes goal G the
weight assigned to the contribution link is positive (com-
prised between 0 and 1). Hence if a goal (G) is associated
with n goals through contribution links, its satisfaction value
is calculated as follows:

s(G) =
∑N

i=1(αi ∗ s(Gi)), −1 ≤
∑N

i=1 αi ≤ 1

αi: weight of the contribution link exiting from goal Gi to goal G
αiin[−1, 0], if Gi hurts G
αiin[0, 1], if Gi helps G

Users can select the goals they are interested in monitoring
to improve system performance. Otherwise monitored goals
can be selected depending on the data collected at runtime.

C. Operationalization

Operationalization [1], [14] is the process that allows us
to (semi-automatically) infer a set of operations from the

formal definition of one or more goals. It improves require-
ments traceability, easing the generation of the functional
and supervision models that must be applied at runtime.

An operation is an input-output relationship over a set
of objects. Operations are specified depending on their
effects on the domain: domain preconditions (DomPre)
and post-conditions (DomPost). Operations are also speci-
fied through required pre-conditions (ReqPre), triggering
pre-conditions (TrigPre), and required post-conditions
(ReqPost). Required preconditions define the application
states in which an operation is allowed to be performed.
Triggering conditions define the application states that ac-
tivate the operation execution. Required post-conditions
define additional conditions that must be true after the
execution of an operation.

Figure 4 shows the result of the operationalization applied
to our case study. For example operation Select Program
selects a washing program if the washing program has
not been selected yet (ReqPre : wm.program = ””).
This operation is activated if in the previous states the
washing program is not selected and in the current state
the washing machine is selected to perform a washing
cycle (TrigPre : wm.state = selected). Furthermore
the operation is activated by event Sel prog(p) which
signals the invocation of an external partner service which
perform the program selection. To achieve the satisfac-
tion of goal G1.1.3 the name and the duration of the
selected washing program p have to be assigned to the
washing machine (ReqPost : wm.program = p.name ∧
wm.washDuration = p.duration).

Goals G1.2 and G1.3 rely on all the operations shown in
Figure 4. Hence, to enforce their satisfaction we need to add
to each operation the following required post-conditions:

ReqPostG1.2 :
�(AS CLOSE AS POSSIBLE TOEMAX(EMAX − e))

ReqPostG1.3 :

�(AS FEW AS POSSIBLE COUNT (dirty clothes))

This operationalization does not claim to be complete.
Instead its purpose is to highlight the links between the goals
and the operations of the real application.

D. Adaptive goals

Our goal model represents adaptation strategies through
adaptive goals that are able to trigger suitable adaptation
actions depending on the satisfaction of crisp/fuzzy goals.
Adaptation actions can change the system’s goal model in
different ways: add/remove goals, modify goals’ definitions
(e.g, changing the membership functions of fuzzy goals),
add/remove/modify operations, and add/remove agents in
charge to perform some operations.

Adaptations make the process move to a new goal model
that also includes adaptive goals. This way, in every stage
of its evolution the process is able to perform adaptation.
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Figure 5. Membership functions of adaptive goals A1 (a) and A2 (b)

Adaptive goals are associated with a set of membership
functions identifying different process’ operative levels. In
our example, we have adaptive goal A1 associated with two
membership functions, shown in Figure 5(a). These member-
ship functions devise operative level normal (OK) and high
energy consumption (HEC), depending on the satisfaction
of goal G1.2. In fact if this satisfaction level is higher than
0.8, the process is working correctly and no adaptation has
to be performed3. Otherwise the process is in operative level
HEC, associated with an adaptation action (A(HEC)). This
adaptation modifies operation Select Program changing its
required post-condition to select economic programs having
a duration shorter than 2−HEC(s(G1.2)) hours.

ReqPostG1.1.3 : wm.program = p.name)∧
wm.washDuration = p.duration∧
∧p.duration ≤ 2−HEC(s(G1.2))

This example also highlights how adaptation strategies
can be tuned depending on the satisfaction level of stated
requirements. In fact in our case the duration of a selected
washing program will depend on the satisfaction level of

3The function associated with operative level OK has an higher member-
ship ( ≥ 0.6) than the membership of the function associated with operative
level HEC (≤ 0.6).

goal G1.2. Obviously, if the violation is too sever it may
happen that no suitable washing programs can be found.

Our model also includes adaptive goal A2, associated with
three operative levels (see Figure 5(b)), depending on the
satisfaction of goal G1.3: normal (OK), medium load (ML)
and high load (HL). If the satisfaction of goal G1.3 is higher
than 0.7, the system is working properly and no adaptation
has to be performed4. If the satisfaction level of goal G1.3
is between 0.2 and 0.7, the system is in operative level ML.
While since the satisfaction level of goal G1.3 is lower than
0.2 the system is in operative level HL.

Adaptation associated with operative level ML (A(ML))
relaxes goal G1.2, making its membership function less
strict. This way we reduce the number of times in which
adaptation A(HEC) has to be executed, avoiding the selec-
tion of time consuming washing programs. While adaptation
associated with operative level HL (A(HL)) adds a new goal
to the system (G1.5) that asserts to adopt another washing
machine, if the current one is already selected and there are
other clothes to wash. Goal G1.5 is defined as follows:

G1.5 :wm,wm′ :WashingMachine
(dirty clothes > 0 ∧ ¬(wm.state = free) ∧ ∃wm′
(¬(wm.id = wm′.id) ∧ wm′.state = free))⇒

♦(wm′.state = selected)

Note also that since goal G1.2 and G1.3 are in conflict,
they must have different priorities. This way only adaptations
triggered by one of them will be performed.

So far we described permanent adaptations, which change
the goal model permanently. We also provide transient
adaptations that temporarily substitute a failing goal with
other ones. Operations corresponding to these temporary

4The function associated with operative level OK has an higher mem-
bership (> 0.6) than that of the other functions



goals have to be executed right after the violation is detected,
requiring to block the system when monitoring and diagnosis
are performed. For example, if goal G1.4.1 is violated
because the washing machine turns off suddenly during the
washing cycle, the system switch to a new transient goal
(G1.6) that asserts to turn on the washing machine.

G1.6 : wm.state = off ∧�t−k¬(wm.sens = green)⇒
♦(wm.state = selected ∧ ¬(wm.powder)∧
∧¬(wm.drumEmpty) ∧ wm.program = ””)

This goal can be operationalized as follows:

Operation: Turn On
Input: wm: WashingMachine
Output: wm: WashingMachine
DomPre: wm.state = off
DomPost: wm.state = selected
TrigPre: start wash(t−k)∧�t−k(wm.sens = ”green”)∧

@(wm.state = off)
ReqPost: ♦t<vwm.program = ”” ∧ ¬(wm.powder)

A transient goal is also associated with a return state. As
we will see in Section III-1, in this case the execution is
resumed to the state in which the drum is full, there is no
powder and a program has to be selected. Transient goals
can be monitored directly and in case they are not satisfied
may trigger the enactment of other transient goals. Note that
in this case the process does not move to a new goal model
but resumes the old one right after the adaptation completes.

III. RUNTIME ELEMENTS

This section illustrates the key elements of the runtime
infrastructure and provides some hints on the functional and
supervision models.

1) Functional Model: A functional model is an abstract
process composed of variables, activities (to perform) and
messages (exchanged with partner services). These elements
have a direct mapping onto objects, events, and operations
in the goal model, respectively. In our example, the process
variables are WashingMachine and WashingProgam,
shown below.

WashingMachine (id: ID, state: {off, free, selected, completed},
powder:true, false, drumEmpty: true, false, program: String,
washDuration: int)

WashingProgram (id: ID, duration: int, name: String)

The former is described by the following attributes: id is
an identifier, state indicates if it is off, free, selected for
a washing cycle, or if a washing cycle completes, powder
shows if the powder container is not empty, drumEmpty
says whether there are clothes in the drum, and program
communicates the current washing program. The latter is
described by the following attributes: id is an identifier,
duration stores the duration of the current washing
program, name contains its name.

Activities imply an interaction of the software system
with the surrounding environment (sensors and actuators)
and interactions with external components. These inter-
actions may be highlighted by the presence of events
representing the exchange of messages with the partner
services. For example, event Sel Prog(p) of operation
Select Washing Program and event Start Wash of op-
eration Wash are mapped onto messages sent and received
to/from an external agent in charge of selecting the program.

The workflow also defines the order in which groups of
operations must be executed (sequentially or in any order)
depending on their pre- and post-conditions. An operation
Op1 must be executed after operation Op2 if and only if its
preconditions are implied by the post-conditions of Op2:

DomPost(Op1) ∧ReqPost(Op1)⇒
DomPre(Op2) ∧ReqPre(Op2) ∧ TrigPre(Op2)

This means that, for example, operation
Empty Washing Machine must be executed after
operation Wash.
While two operations (e.g., Op1 and Op2) can be executed
in any order if the following conditions

• (ReqPost(Op1) ∧DomPost(Op1) =⇒
ReqPre(Op2) ∧ TrigPre(Op2) ∧DomPre(Op2)

• (ReqPost(Op2) ∧DomPost(Op2)⇒
ReqPre(Op1)∧TrigPre(Op1)∧DomPre(Op1))

Again, this means that operations Insert Powder,
Insert Clothes, and Select Program can be executed in
any order. The same checks must be performed for those
operations derived from goals added after adaptation. For
example, in our case we have to check whether operation
Turn On can be executed after operation Select Program
and before operation Insert Clothes. These rules allow us
to build an executable process, in which the operations are
put in the proper order (Figure 6).

Insert
Powder(wm)

Insert
Clothes(wm)

ANY ORDER

Wash

t

Empty Washing 
Machine

Receive(p)Invoke()

X

Turn On(wm)

S0 S1 S2 S3 S4 S5

Select
Program(wm)

Figure 6. Workflow of the laundry system.

2) Supervision model: A supervision model comprehends
directives for data collectors, monitors, and adaptors. They
retrieve information about the actual behavior of the system,
evaluate the degree of goals’ satisfaction, and apply adapta-
tion, if needed.

Data Collection. A data collector provides monitoring com-
ponents with the necessary information to evaluate goals’



satisfaction. Data may come from different kinds of probes.
We can have data acquired from external sensors (e.g.,
washing machine parameters), process internal variables,
messages exchanged with partner services, and historical
data collected with previous process executions. Moreover,
data collectors are able to mask the heterogeneity and proto-
cols adopted by different probes, and provide monitors with
homogeneous information. Data collectors must be properly
configured to collect the information of interest. Then, they
can provide monitors with retrieved data in the following
ways: (a) as soon as they are collected (push), every specified
time frame (periodic push), and when required by moni-
toring components (pull). In our example, to evaluate the
satisfaction of goal G1.1.3, we need to collect data from
the surrounding environment (wm.state, wm.program)
in a push way. Furthermore these data must be collected
for the states in which the process executes the operations
associated with the monitored goal (state S2).

Monitoring. The runtime infrastructure comprises a set of
monitoring plug-ins able to evaluate LTL expressions or
membership functions over a set of states. Each monitoring
plug-in works with some data collectors and is configured
to check the requirement’s satisfaction in particular states
of the process. Requirements evaluation is performed by
translating the formal definition of a goal into a directive
that can be processed by the monitoring component. For
example, to verify goal G1.1.3, we need an LTL checker
that works with data wm.state and wm.program. While
since fuzzy goal G1.2 could be ideally verified in each
state of the application, we must manually select in which
states we want to collect data about energy consumption
to trigger the evaluation of the corresponding requirement.
The evaluation of a monitoring constraint may require that
the process be blocked when a transient adaptation must be
executed since a monitored goal is violated. This happens
for goal G1.4.1: when washing completes the process is kept
blocked to evaluate its satisfaction. If the goal is not verified,
operation Turn on(wm) is triggered.

Adaptation. Adaptation is triggered by the evaluation
of the membership functions associated with adaptive
goals. This happens when goal satisfaction levels are up-
dated at runtime. At this level, adaptation action spec-
ified in the adaptive goals are translated into the fol-
lowing lower level actions: identify_ agent detects
a concrete partner service (endpoint) that must perform
an operation, change_state modifies the process state,
change_protocol modifies the order of the process
activities, add_op/remove_op adds/removes the pro-
cess activities corresponding to specific operations de-
tected in the goal model, and change_directives
changes the adaptation directives given to data collec-
tors, monitors, and adaptors. Adaptation actions defined
in the adaptive goals can have different impacts on the

workflow and supervision components. For example, action
change_agent is translated into the lower level operation
identify_agent, and it may also generate changes
in the functional model (actions change_protocol,
add_op, remove_op), or in the way supervision is per-
formed (action change_directives). Each adaptation
can be safely performed in specific execution points, called
quiescent states [18]. For this reason, we must control
the execution of the system and keep it blocked when
an adaptation needs to be executed and the application
reaches one of the quiescent states. For example, suppose
we want to perform adaptation associated with operative
level ML of adaptive goal A2. This action will trigger lower
level action change_directives that modify the way
in which monitoring components evaluate the membership
function that assesses the satisfaction of goal G1.2. In this
case, all execution points are quiescent states, since this
adaptation does not impact on the business logic and the
evaluation of the membership function must not be done on
a temporal window. While since our adaptation changes the
order in which operations Insert Powder and Select
Program are executed, S0 and S1 (Figure 6) become
quiescent states.

IV. RELATED WORK

Different works have already tried to bridge the gap
between requirements specifications and the underlining
service compositions. For example, Kazhamiakin et al. [10]
adopt Tropos [7] to specify the objectives of the different
actors involved in a choreography. Tropos tasks are refined
into messages exchanges, suitable annotations are added
to express conditions on goal creation and fulfillment, and
assume/guarantee conditions are added to the tasks delegated
to partner services. These elements enable the generation of
an annotated BPEL process that can be statically verified,
applying model checking. Instead, we adopt requirements to
derive suitable supervision directives to monitor and adapt
service compositions at runtime.

We adopt fuzzy goals [12] to tune the adaptation activities
according with the satisfaction levels of the stated goals.
Fuzzy goals have been used for several objectives, e.g., the
selection of COTS components during requirements elicita-
tion [2]. In fuzziness to express and assess the satisfaction
degree of requirements with the idea of introducing a bit of
vagueness, the possibility of preventing some violations, and
the ability to tolerate small/transient deviations. This way
monitoring requirements satisfaction level at runtime, allows
one to effectively select and tune the adaptation options
accordingly.

The concept of requirements monitoring was originally
proposed by Fickas et al. [6]. The authors adopt a manual
approach to derive monitors able to verify requirements’
assumptions at runtime. Mylopolus et al. [15] use the
generation of log data to infer the denial of requirements



and detect problematic components. Diagnosis is inferred
automatically given assumptions on which requirements can
fail. Robinson [13] distinguishes between the design-time
model, where business goals and their possible obstacles
are defined, and the runtime model, where logical monitors
are automatically derived from the obstacles and are applied
onto the running system. This approach requires diagnostic
formulae to be generated manually from obstacle analysis.
Despite a lot of work focused on requirements monitoring
only a few of them provide reconciliation mechanisms when
requirements are violated. Wang et al. [15] generate system
reconfiguration guided by OR-refinements of goals, after a
goal violation is diagnosed. They choose the configuration
that contributes most positively to the non-functional re-
quirements of the system and also has the lowest impact
on its current configuration. Our proposal builds on existing
monitoring solutions and emphasizes the separation among
probing, analysis, and reaction to provide a single homoge-
neous framework in which the different approaches can be
seamlessly integrated. This way, monitoring and adaptation
capabilities are not hard-coded in the infrastructure, but can
be selected and customized according to the actual needs.
We exploit the operation model to trace requirements onto
the underlying implementation and detect the variables that
must be collected and the constraints that must be evaluated.

V. CONCLUSIONS

This paper presented an innovative goal-based approach
for specifying the requirements and adaptation capabilities
of service compositions and map them onto the underlining
implementation. Our proposal allow to specify some adapta-
tion features at design time (e.g., the strategy to apply) and
customize adaptation details at runtime depending on the
specific execution context and an experimented violations.

In the future work we plan to explicitly embed the goal
satisfaction levels in the goals model and detect different
adaptation strategies depending on the satisfaction levels. We
also think to include other actions [9] (e.g. send an email
message, log variables’ state, activate a human task or other
activities coded in java).
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